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ABSTRACT Recent advancements in autonomous vehicle (AV) technology have highlighted critical
cybersecurity vulnerabilities within In-Vehicle Networks (IVNs), particularly the Controller Area Network
(CAN) bus. While numerous Intrusion Detection Systems (IDS) exist, significant gaps remain in addressing
resource efficiency and the challenge of Non Independent and Identically Distributed (Non-IID) data in dis-
tributed vehicular environments. This study proposes Fed-CALiBER, a novel framework that synergistically
combines a compact, pre-trained Lightweight BERT model with a Federated Learning (FL) architecture. By
training collaboratively on distinct datasets assigned to Raspberry Pi edge clients, our approach preserves
data privacy by keeping raw data localized and is explicitly designed to enhance generalization across Non-
IID data distributions. With a reduced communication overhead by transmitting a small parameter footprint
(approx. 13 MB) during federated updates, Fed-CALiBER minimizes network overhead during parameter
aggregation. Our two-cycle experimental results demonstrate that the federated global model significantly
outperforms standalone models in cross-dataset generalization—improving F1-scores on unseen datasets
from as low as 71.39% to over 96.59%—and successfully adapts to shifting data distributions. The framework
is validated as a practical edge solution, achieving real-time inference (3—4 ms per sample) with low
computational overhead on Raspberry Pi clients, representing a lightweight edge client.

INDEXTERMS Autonomous Vehicle, BERT, CAN Bus Protocol, Federated Learning, In-Vehicle Networks,

Intrusion Detection System, Lightweight, Transformers

I. INTRODUCTION

S autonomous vehicles (AVs) currently becoming in-

creasingly reliant on a complex in-vehicle networks
(IVNG5) to facilitate communication among various Electronic
Control Unit (ECU), the necessity for a robust Intrusion
Detection Systems (IDS) is of high priority. These ECUs,
primarily utilizing protocols such as Controller Area Network
(CAN), are essential for the operation of critical functions
such as engine control, braking, navigation systems, etc. The
interconnected nature of these systems also bring a concern
as it broadens the attack surface, exposing vehicles to a var-
ious cyber threats. Attackers can exploit the vulnerabilities
in in-vehicle communication protocols to manipulate vehicle
functions, potentially compromising passenger safety and
vehicle integrity, just like an experiment in 2015, a remote
hacking involving Jeep Cherokee [1], resulting in the attacker
gaining controls of critical vehicle functions, higlighting the
consequences that may arise out of such exploits.
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In order to address this problem, many researchers have
concentrated on creating security techniques, such as the
usage of intrusion detection systems (IDS) to examine CAN
traffic in order to find anomaly that can point to possible
attacks or intrusions such as Denial of Service (DoS), Fuzzy,
and Spoofing attack. These systems are typically divided
into two categories: Conventional IDS and the more ad-
vanced, ML/DL-based IDS. Conventional IDS usually used
a rule-based approaches in detecting intrusion, utilizing pre-
established rules to identify anomalies in CAN Bus communi-
cation. Because of their simplicity, they are easy to design and
frequently used in the industry. These devices provide quick
and affordable vehicle incursion detection. However, a sig-
nificant drawback of rule-based intrusion detection systems is
their dependence on extensive rulesets that cover every poten-
tial CAN traffic feature [2]. As a result, rule-based intrusion
detection systems (IDSs) are excellent at identifying known
attacks, but they have trouble spotting new or unexpected
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attack patterns.

Current trends indicates an increasing number of both
researchers and practitioners on implementing an advanced
IDS, by utilizing Machine Learning (ML) and Deep Learning
(DL) techniques to detect anomalies and malicious activi-
ties on Autonomous Vehicle. Researchers conducting exper-
iments and researching on attacks such as replay attacks,
injection attacks, and denial of service attempts, the systems
are able to identify them, enhancing the resilience against
cyber intrusions. Continuous development and deployment of
IDS that incorporate advanced approaches like deep learning
for anomaly detection are crucial to securing IVNs and en-
suring the safety and reliability of future autonomous driving
technologies. The underlying problem on leveraging ML ap-
proaches to develop an IDS is, it is heavily dependent to the
quality of the manual feature engineering, while deep learning
doesn’t, since it extract the features automatically [3].

A lot of research have been done to create and develop an
IDS using Deep Learning approaches. A research by Lo et
al.[4], aimed to develop an IDS that leverages both spatial
and temporal data representation to improve detection accu-
racy, by employing a combination of Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM)
networks, allowing for the automatic extraction of features
from CAN traffic. This approach has its own limitations,
such as evaluated by using only one type of Datasets and
yet to be tested by other data or different environment. The
study conducted by Althunayyan et al.[5], proposed a hybrid
approach that combines supervised and unsupervised learn-
ing methods, utilizing an artificial neural network (ANN)
for detecting known attacks and an LSTM-autoencoder for
identifying previously unseen attacks while also applying
Federated Learning (FL) framework that leverages diverse
driving behaviors while ensuring privacy protection during
data training.

Nevertheless, there is also an observational gap regard-
ing how well current models would perform under differ-
ent driving conditions and environments, which necessitates
more thorough simulation implementation to represent real-
world circumstances even more. To bridge this gap, this
paper presents Fed-CALiBER, a framework utilizing Feder-
ated Learning for privacy-preserving, collaborative intrusion
detection with a lightweight BERT model suited for edge
devices. This approach is evaluated via a realistic simulation
environment where distinct CAN datasets are assigned to
Raspberry Pi clients, representing diverse real-world vehic-
ular contexts. This study offers the following contributions:

o Proposed Fed-CALiBER, a framework incorporating
Federated Learning (FL) to preserve the privacy of each
client’s local data, utilizing the attention mechanism of
a lightweight BERT model optimized for high perfor-
mance on resource-constrained devices; and

e Designed a simulation to more accurately represent
real-world conditions (Non-IID) by assigning distinct
datasets to each client, represented by a Raspberry Pi.

The remainder of this paper is structured as follows:
Chapter 2 presents the background of the CAN Bus pro-
tocol, common attack types, and the motivation for adopt-
ing a lightweight approach. Chapter 3 provides a review of
related work in this domain. Chapter 4 outlines the pro-
posed method, detailing its key components?including the
lightweight BERT model, federated learning framework, and
experimental setup. Chapter 5 presents and discusses the ex-
perimental results. Chapter 6 concludes the study and outlines
potential directions for future work.

Il. BACKGROUND AND MOTIVATION

This section will discuss the overview of CAN Bus protocol
and highlights common attack types, including Denial of
Service (DoS), Fuzzy, and Spoofing attacks. It also outlines
the rationale behind implementation of lightweight model and
federated learning approach in this study.

A. CONTROLLER AREA NETWORK (CAN) BUS

The Controller Area Network (CAN Bus) was developed
as a multi-master bus protocol (without a central controller)
designed for broadcasting messages [6]. It was engineered to
serve as a reliable communication medium among Electronic
Control Units (ECUs) and has become the most widely used
communication protocol within in-vehicle networks (IVNs).
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FIGURE 1. CAN Bus Topology

The Controller Area Network (CAN) bus is a multi-master,
message-oriented protocol fundamental to in-vehicle com-
munication. Unlike traditional networks, CAN does not use
source or destination addresses; instead, messages are broad-
cast and identified by a unique CAN ID, with this study
adopting the standard 11-bit format [7].Each Electronic Con-
trol Unit (ECU) is configured to process only messages with
specific IDs relevant to its function. To manage network traf-
fic, CAN employs a priority-based arbitration system where
messages with numerically lower CAN IDs are given trans-
mission priority, ensuring that critical data is not delayed. This
ID-based prioritization and broadcasting mechanism, while
efficient, forms the basis for several potential attack vectors

[8].

B. COMMON ATTACK TYPES AGAINST CAN BUS
The operational mechanism of the CAN Bus, which relies on
broadcast-based message distribution and a priority scheme,
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FIGURE 2. CAN Bus Frame

combined with the absence of fundamental security mea-
sures such as encryption and authentication, renders the sys-
tem highly vulnerable to cyberattacks. Several studies have
demonstrated that once an attacker gains access to the in-
vehicle network (IVN) either through direct connection via
the OBD-II port or remotely via wireless interfaces, they are
capable of injecting tampered messages into the network,
leading to various types of attacks such as Denial of Service
(DoS), Fuzzy, and Spoofing attacks [9].

1) Denial of Service (DoS)

A DoS attack aims to disrupt network availability by continu-
ously sending (spamming) messages. Given the message pri-
oritization scheme implemented by the CAN Bus, an attacker
can inject high-priority messages to dominate the network and
block legitimate traffic. As illustrated in fig. 3, Node B (which
is compromised/malicious) persistently sends messages with
ID 0x00 (the highest priority), causing messages from Node
A and Node C to be deferred until the high-priority message
transmission is complete.

ik

l Congested l
D CAN Bus 900 D

FIGURE 3. Illustration of DoS Attack on CAN Bus

2) Fuzzy Attack

Fuzzy attacks are intended to disrupt vehicle functions and
delay normal message delivery. In this type of attack, the
adversary injects multiple messages with random CAN IDs
and arbitrary data payloads to trigger malfunctions in specific
vehicle components. This is illustrated in fig. 4, where the
attacker transmits messages with randomly generated CAN
IDs into the network.

3) Spoofing Attack

Spoofing attacks aim to impersonate a specific message
(identified by a particular CAN ID) to gain control over a
certain vehicle function. The attacker first identifies the target
CAN D or ECU and then injects manipulated messages using
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FIGURE 4. lllustration of Fuzzy Attack on CAN Bus

that ID. As depicted in fig. 5, Node B (malicious) imperson-
ates Node A and repeatedly sends forged messages under that
CAN ID, exploiting the lack of authentication mechanisms in
the CAN Bus system.
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FIGURE 5. lllustration of Spoofing Attack on CAN Bus

C. MOTIVATION FOR LIGHTWEIGHT AND FEDERATED IDS
DESIGN

Deploying a modern IDS in a real-world vehicular fleet
presents several significant challenges that traditional ap-
proaches fail to address. In a realistic multi-vehicle sce-
nario, the data is inherently Non-Independent and Identi-
cally Distributed (Non-IID), as each vehicle generates CAN
traffic with unique statistical properties and attack manifes-
tations, hindering the generalization of a single, centrally
trained model. Furthermore, conventional centralized training
paradigms require the collection of sensitive CAN data, which
not only raises significant privacy concerns but also creates
a single point of failure. Compounding these issues, many
sophisticated deep learning models are too computationally
intensive ("heavy") for practical on-board deployment within
resource-constrained ECUs or on cost-effective edge devices
like the Raspberry Pi, limiting the feasibility of real-time, on-
device inference.

Addressing these multifaceted challenges necessitates a
paradigm shift towards a solution that is simultaneously
resource-efficient, privacy-preserving, and robust to data het-
erogeneity. This study is therefore motivated by the need for
an IDS that can operate effectively under such constraints.
We propose leveraging a lightweight BERT variant, inspired
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by architectures like TinyBERT, which is specifically adapted
to learn efficient representations of CAN message features
without the prohibitive computational cost of larger models,
making it ideal for low-latency, on-device inference. To tackle
the issues of data privacy and the Non-IID nature of dis-
tributed datasets, we incorporate Federated Learning (FL). By
training this compact model collaboratively across multiple
clients (each on its local, distinct dataset) without sharing
raw data, FL inherently preserves privacy and enables the
global model to learn from a diverse range of conditions,
thereby improving its ability to generalize and enhancing
overall detection robustness for an entire fleet.

Ill. RELATED WORKS

This section will discuss the recent researches developments
and problems regarding utilization of Transformers and FL
on developing IDS for CAN Bus.

A. TRANSFORMERS FOR IDS ON AV

A study by Cobilean et al.[10], proposes a decoder-only
Transformers, named CAN-Former IDS, for CAN Bus
anomaly detection, leveraging self-attention over tokenized
CAN messages (9 tokens consists of 1 ID + 8 payload bytes)
to model long-range dependencies and predict the next to-
ken. It outperforms LSTM, ResNet, and graph-based IDS in
accuracy and inference speed but suffers from higher com-
putational cost and increased false positives due to payload
noise. CANBERT, which was proposed by Nwafor and Olu-
fowobi[11], uses BERT to classify CAN messages, pretrain-
ing on normal traffic to learn semantics and fine-tuning on
attack-labeled data, achieving perfect detection scores across
multiple attack types. Albeit its superiority, the authors ac-
knowledge that pretraining is computationally expensive and
real-time processing is still an issue, which could limit de-
ployment in resource-constrained environments. The authors
also mentions that the experiment lacks of diverse datasets.
Furthermore, on their result table, the authors compared a
normal messages to each attack one by one, and did not
apply a multiclass classification in one go. A proposed bi-
directional GPT-based Transformers IDS is introduced by Jo
et al.[12], enhancing detection of subtle CAN Bus attacks
(e.g., spoofing) by processing input in both forward and back-
ward directions. It surpasses CAN-BERT, and CAN-Former
in precision and recall but poses challenges for real-time ECU
deployment due to long input sequences and computational
overhead.

In CAN-BERT do it paper by Alkhatib et al.[13], the
authors applies self-supervised BERT with masked language
modeling to capture bidirectional context in CAN ID se-
quences, successfully improving injection attack detection
over RNNs, PCA, and Isolation Forest models. Evaluation
was done using the Car Hacking Challenge 2020 dataset, re-
sulting in real-time inference, taking between 0.8 to 3 ms with
high F1-scores between 0.81 and 0.99 across three car types
and multiple attack types (Flooding, Fuzzy, Malfunction).
The downside of this research is it requires high computa-
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tional cost. A study by Fu et al.[14], proposed IoV-BERT-IDS,
combining pre-trained BERT with custom semantic extrac-
tors to transform CAN frames into structured byte sentences,
to make it fit as an input for Transformer. It achieves superior
accuracy over AE, VAE, and ByteSGAN across several IDS
datasets. Despite its strong performance, the model faces
challenges including high computational cost, difficulties in
detecting certain attack types like Malfunction attacks. To
address these, the authors recommend TinyBERT variants as
future research directions.

A research by Guan et al.[15] proposed a Transformers-
based Intrusion Detection System (called PTIDS) for CAN
Bus, they utilized Principal Component Analysis (PCA) for
feature selection and a multi-head self-attention mechanism
by using only the encoder block of a Transformers architec-
ture, to effectively capture temporal dependencies in vehicle
network traffic. PTIDS achieves 99.80% accuracy on the
Car Hacking Dataset, with the trade-offs of requiring high
computational costs and large amounts of data for training due
to its complexity. Zhang et al.[16] on their study, proposed
a federated two-stage Transformers IDS using an encoder-
only architecture with multi-head attention, tailored to han-
dle non-IID, imbalanced CAN Bus datasets in a privacy-
preserving manner. The model outperforms LSTM, CNN, and
other baseline models in both detection accuracy and speed.
However, the authors admits that there are several drawbacks
behind its superiority, such as requiring more computational
resources than a lightweight LSTM model, and a limited
onboard deployment due to its complexity and its required
cost, suggesting a model optimization for edge devices de-
ployment. Taneja and Kumar[17] extended the CNN-LSTM
paradigm by integrating an attention mechanism to capture
spatial and temporal features across multiple time horizons
without requiring feature preprocessing. However, their ex-
periments were limited to PCgrade hardware, lacking evalu-
ation on embedded platforms like Raspberry Pi or ECU en-
vironments. Although their model did not use Transformers,
it remains relevant for highlighting deployment limitations on
lightweight platforms, which this study addresses by adopting
a lightweight BERT-based approach and implementing it on
Raspberry Pi.

B. FL FOR IDS ON AV

In recent years, the application of FL in enhancing security for
IDS in AV has garnered significant attention due to its poten-
tial to address privacy concerns associated with conventional
centralized machine learning approaches. Driss et al.[18],
proposed an FL framework specifically for detecting cyber-
attacks within Vehicular Sensor Networks (VSNs), achieving
detection accuracy of 99.52% by leveraging GRU and an RF
ensemble method on the "Car Hacking: Attack and Defense
Challenge 2020" dataset. Expanding on the advantages of
FL in their study, Bhavsar et al.[19], introduced a Federated
Learning-based IDS that allows edge devices to learn from
local data while preserving user privacy. Their experiments
conducted using the NSL-KDD and Car-Hacking datasets
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on Raspberry Pi and NVIDIA Jetson Xavier platforms to
representate edge/client and central server, showcased high
detection accuracies of up to 99% with reduced loss values.

Similarly, Althunayyan et al.[5], in their study presented
a multi-stage IDS leveraging Artificial Neural Networks
(ANN), LSTM networks, and FL, specifically targeting in-
vehicle networks’s CAN Bus. The experiments resulting
in a remarkable Fl-score exceeding 0.95 for unseen at-
tacks, alongside a detection rate of 99.99%, maintaining a
lightweight architecture suitable for resource-constrained en-
vironments with the model taking only 2.98MB in the storage.
Zhang et al.[16] proposed a two-stage intrusion detection
system using an encoder-only Transformer trained under a
federated learning framework to address privacy concerns
and data imbalance in crowdsourced CAN Bus datasets. By
sharing only model parameters across clients, their approach
effectively mitigates the challenges of non-IID data and en-
hances detection accuracy without requiring centralized ac-
cess to sensitive in-vehicle data

Despite these advancements, notable gaps remain in the
current research landscape. While various studies, such as
those by Althunayyan et al.[5] and Zhang et al.[16], demon-
strate the effectiveness of deep learning models like ANN-
LSTM and Transformers Encoder block in achieving high
detection accuracy rates, they also reveal significant limi-
tations, particularly the lack of real-time application envi-
ronments. To the best of my knowledge, there has been no
prior research exploring the use of Federated Learning in Au-
tonomous Vehicle In-Vehicle Networks utilizing lightweight
BERT models. This study aims to address this gap by sim-
ulating the conditions of distributed clients (AVs) in various
environments, which leads to different data collections. By
implementing lightweight BERT model, we seek to achieve
high detection accuracy that reflects real-world scenarios in-
volving multiple clients and diverse datasets. Fig. 1 illustrates
the literature map for this research, based on existing studies.
Subsequently, Tables 1 and 2 show the comparison between
the proposed work and existing studies.

IV. PROPOSED METHOD

This section details our proposed Fed-CALiBER frame-
work for CAN bus intrusion detection, designed to be both
resource-efficient and privacy-preserving. We first describe
the architecture and pre-training of our lightweight BERT
model tailored for CAN data, followed by an explanation of
the federated learning scheme used for collaborative training,
and finally, the experimental setup for evaluation.

A. LIGHTWEIGHT BERT

The core of our client-side intrusion detection is the
Lightweight BERT model specialized for CAN Bus, a
lightweight Transformer encoder specifically designed for
efficient processing of CAN bus messages. Fig. 7 illustrates
the whole pipeline of the lightweight BERT and Fig.8 shows
the proposed lightweight BERT architecture. Each CAN mes-
sage, initially comprising a timestamp, CAN ID, Data Length
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Code (DLC), and up to eight data bytes, undergoes prepro-
cessing. To handle missing values, any null entries in the
DATA column that were less than eight bytes were padded
with zeros. Similarly, for every value that is fewer than four
bytes in CAN ID column is also padded with zero. To en-
sure uniformity, the values in the Timestamp column were
adjusted to display six digits after the decimal point, and set
the payload’s value into uppercase (for hexadecimal letter).
The Label column is also mapped to transforms the categor-
ical labels (R/T) into numerical values, with O as a normal
message, 1 identifies as DoS attack, 2 as Fuzzy attack and 3 as
Spoofing attack. The Label column on the dataset that’s going
to be used for pretraining is omitted. The subsequemt step are
formatting the components into a space-delimited sentence.

This sentence is then tokenized using a trained Byte-Level
BPE tokenizer with a vocabulary size of 1000. Special tokens
[CLS], [UNK], and [SEP] are added, and the resulting token
sequence is padded or truncated to a maximum sequence
length of 32. The Byte-Level BPE tokenizer was trained on
a corpus of approximately 6.3 million normal CAN mes-
sages merged from the normal traffic portions of all three
datasets used in this research. The vocabulary size of 1000
was chosen as a balance to capture common CAN message
components as single tokens while still allowing for sub-word
tokenization of more variable elements. The sequence length
of 32 was selected based on an empirical analysis of our
tokenized data, which showed that the vast majority of CAN
message "sentences" tokenize to a length between 19 and 24
tokens. This choice avoids information loss from truncation
while minimizing the computational overhead from excessive
padding.

The Fed-CALiBER’s lightweight BERT architecture con-
sists of an embedding layer, which computes the sum of
token, position, and token type embeddings, followed by
4 Transformer encoder layers. Each encoder layer is com-
posed of two main sub-layers: a multi-head self-attention
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TABLE 1. Comparison of Transformer-based IDS for In-Vehicle Networks

Feature/Aspect Cobilean et al. Nwafor & Alkhatib et al. Fu et al. [14] Guan et al. [15] Zhang et al. [16] Fed-CALIiBER
[10] Olufowobi [11] [13] (CAN-BERT) (IoV-BERT-IDS) (PTIDS) (Federated 2-stage)  (Proposed)
(CAN-Former) (CANBERT)

Base Model Decoder-only BERT (Encoder) Self-supervised Pre-trained BERT Encoder-only Encoder-only Lightweight

Architecture Transformer BERT (Encoder) + Custom Transformer Transformer BERT (Encoder)

Extractors

Pre-training Next-token On Normal CAN Self-supervised Uses pre-trained N/A (No N/A (Trained on On Normal CAN
prediction (not (MLM, MLM on CAN ID (NLP) BERT Pre-training) task) (MLM,

MLM) RoBERTa-style) seq. RoBERTa-style)

Input Representation CAN ID + DATA Full CAN sentence ~ CAN ID sequences  Structured Byte PCA-selected Raw CAN features ~ Formatted CAN
sequence (linguistic style) Sentences CAN features (unspecified) Sentences (Full
(separate) (14-dim) Msg)

Key Novelty/Focus Next token BERT for CAN MLM for CAN ID Hybrid BERT with ~ PCA + Two-stage FL, Federated
prediction for classification context Byte-sentence Transformer Non-IID handling Learning +
anomaly input Encoder Lightweight

BERT

Federated Learning No No No No No Yes (Two-stage) Yes (Iterative

FedAvg)

Lightweight Focus Moderate (faster No (acknowledges No (high compute Suggests No (high compute Mentions Yes (Explicit
than some pretrain cost) cost) TinyBERT for cost) optimization Design & RPi
baselines) future needed Eval)

Dataset Diversity Single dataset Lacking Car Hacking 2020 Yes (4 distinct IDS ~ Car Hacking Yes (3 distinct Yes (3 Distinct
implied (acknowledged) (3 car types) datasets) Dataset datasets) Datasets,

Cross-Eval)

Real-time/Edge Potential (some Limited by Yes (0.8-3ms High compute cost High compute cost Limited by Yes

Deployment concerns) processing cost inference) complexity (Demonstrated on

RPi, 3-4ms)
Privacy Not addressed Not addressed Not addressed Not addressed Not addressed Yes (via FL) Yes (via FL Data
Localization)
Tokenization Layer Input Layer
[Timestamp,CAN_ID,DLC,DO,
Vocab Size = 1000 D1,02,D3,D4,05,06,D07]
Padded to maxseqlen=32 Adds [CLS], [SEP], [UNK]
Token ID Byte-Level BPE SEETEE Raw CAN
Sequence Tokenizer 14.2534 00AA 8 2B D8 ... AE 00 FOEIIE Message
’ h Preprocessing
Tokenized normal messages Tokenized labeled messages Output Layer
e b tod Taskx ff TaskY, Classification Task Pt/ R
o — B W .m' i ] \ Linear Classifier

BERT

I
logits
)

Softmax Activation

l

Pre-training

Fine-Tuning

Predicted Class
(Normal/DoS/Fuzzy/Spoofing)

FIGURE 7. Proposed Lightweight BERT Pipeline Illustration

mechanism and a position-wise fully connected feed-forward
network, with residual connections and layer normalization
applied around each sub-layer. The multi-head self-attention
mechanism, in our configuration utilizing 4 attention heads,
allows the model to jointly attend to information from dif-
ferent representation subspaces. For each head, scaled dot-
product attention is computed as:

Attention(Q, K, V) = softma oK™ \% (1)
1 9 9 = X\| —F——

Vi
where Q (Query), K (Key), and V (Value) matrices are linear

6

projections of the input hidden states, and dj, is the dimension
of the keys. The outputs of these heads are concatenated
and linearly projected. The subsequent position-wise feed-
forward network (FFN) consists of two linear transformations
with a GELU activation function in between:

FEN(x) = GELU(xW, + by )W, + by )

The hidden size throughout the model is 256, and the FFN’s
intermediate size is 1024. For classification, the representa-
tion derived from the [CLS] token’s final hidden state from
the last Transformer layer is passed through a final linear
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TABLE 2. Comparison of Federated Learning Approaches for In-Vehicle IDS

Feature/Aspect Althunayyan et Bhavsar et al. [19]  Driss et al. [18] Zhang et al. [16] Fed-CALIiBER
al. [5] (Generic FL IDS) (GRU+RF FL for (Federated 2-stage)  (Proposed)
(ANN+LSTM-AE VSN)
FL)

Base Model ANN (known), Logistic GRU + RF Transformer Lightweight

Architecture LSTM-AE Regression (LR) Ensemble Encoder BERT (Encoder)
(unknown) and (CNN)

FL Algorithm Not specified Federated Not specified Not specified Federated
(implies FedAvg) Averaging (implies FedAvg) (implies FedAvg) Averaging

(FedAvg) (FedAvg)
Focus on Lightweight  Yes (2.98MB Usage not Not explicitly for Acknowledges Yes (TinyBERT

Client Model

Handling Non-IID
Data

Edge Device Eval

Dataset Simulation

model, RAM usage
<1GB)

Leverages diverse
driving (implies
Non-IID)

Implied
(lightweight)

Diverse driving
behaviors

explicitly stated
but mentions edge
devices (RPi,
Jetson)

Not explicitly
detailed

Yes (Raspberry Pi,
Jetson)

NSL-KDD, Car
Hacking

on-device VSN
nodes

Not explicitly
detailed

Not detailed

Car Hacking
Challenge 2020

their Transformer
is not lightweight
for edge (RAM
usage around 5SGB)

Explicitly tailored
for Non-IID,
imbalanced

Suggests
optimization
needed

Car Hacking
Dataset, Ford
Transit 500
Dataset, IVN
Intrusion Detection
Challenge Dataset

inspired), 3-4 ms /
sample on
inference, RAM
usage 400 - 600
MB, 13 MB
model, around 3.4
million
parameters

Evaluated with
Distinct Datasets
per Client

Yes (Raspberry
Pi)

Car Hacking
Dataset, Car
Hacking
Challenge 2020
Dataset, Survival
Analysis Dataset

layer. A softmax activation function is then applied to the
output of this linear layer (logits) to produce probabilities
for the 4 classes: Normal, DoS, Fuzzy, and Spoofing. This
compact architecture was chosen to balance representational
power with the computational constraints of edge devices.
The model is pre-trained from scratch on a large corpus of
normal CAN messages using the Masked Language Modeling
(MLM) objective, adopting RoOBERTa-style by Liu et al.[20]
optimizations such as omitting the Next Sentence Prediction
task.

B. FEDERATED LEARNING ARCHITECTURE

Federated Learning (FL) framework is employed to address
the privacy requirements and handle the Non-IID nature of
distributed vehicular data, illustrated in Fig. 9. This frame-
work operates on a client-server model. A central server coor-
dinates the learning process, while multiple clients (represent-
ing individual vehicles, simulated by Raspberry Pi devices
in our experiments) perform model training exclusively on
their local CAN bus datasets. This ensures that raw, poten-
tially sensitive, in-vehicle data never leaves the client device,
inherently preserving data privacy.

The FL process is iterative and occurs over several com-
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munication rounds as depicted in the Fig. 10. In each round,
the following steps take place:

1) Model Distribution: The central server transmits the
current global model parameters to a selection of par-
ticipating clients;

2) Local Client Training: Upon receiving the global model
parameters, it then performs local fine-tuning using its
own private dataset for a predefined number of local
epochs, optimizing the model based on its specific data
characteristics. This local training phase allows each
client to contribute its unique knowledge;

3) Model Update Submission: After local training, each
client transmits the parameters back to the central
server, representing the knowledge gained from its local
data;

4) Server-Side Aggregation: The central server then ag-
gregates these individual client updates to produce a
new, improved global model. This aggregated model
then becomes the starting point for the next commu-
nication round.

The central server aggregates the model parameters using
Federated Averaging (FedAvg) algorithm [21]. FedAvg was
selected as it is the foundational and most widely adopted

7
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baseline algorithm in federated learning research. Its imple-
mentation simplicity and low computational overhead make
it an ideal starting point for establishing the fundamental
viability of our proposed lightweight model within a feder-
ated framework, particularly in a resource-constrained edge
environment. This choice allows us to provide a clear perfor-
mance benchmark and isolate the effectiveness of the model
architecture and the FL paradigm itself, without the added

8

complexity of more advanced optimization algorithms.
K e

Wit = ,; — Wi 3
wyy1 represents the global model parameters at round ¢, and
wk 1 are the parameters from client k (which trained on n;
local samples) after local training in that round, the server
updates the global model to w; 1. K is the number of partici-
pating clients and n = > n;. This iterative process allows the
global model to learn collaboratively from the diverse datasets
held by all clients without centralized data collection, leading
to a more generalized and robust intrusion detection system.
Our experiments, detailed in Section 4.3.4, utilize a two-
cycle approach with this FL framework, where client dataset
assignments are shifted between cycles to further simulate
real-world data variability and assess model adaptability.

C. EXPERIMENTAL SETUP

To empirically evaluate the performance and efficacy of our
proposed Fed-CALiBER framework, a comprehensive ex-
perimental setup was designed. This setup encompasses the
implementation environment for our models and federated
learning process, the datasets employed to simulate diverse
client environments, and the metrics used for performance
assessment. Furthermore, we detail a two-cycle experimental
design to investigate both initial generalization and the adapt-
ability of the federated model to shifting data distributions.

1) Implementation Details
The Fed-CALIiBER framework was implemented using
Python, leveraging several key libraries for deep learning and
federated learning. The lightweight BERT model and its fine-
tuning were built using PyTorch [22] and the Hugging Face
Transformers library [23]. For the federated learning compo-
nent, we utilized the Flower framework [24] to manage client-
server communication and model aggregation. Specifically,
the Federated Averaging (FedAvg) algorithm was employed
as the server-side aggregation strategy.

The experimental environment consisted of a central server
simulated on a MSI Vector 16 HX AI A2XW laptop, us-
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ing Intel Core Ultra 9 275HX, 16GB RAM DDRS5-5600
NVidia RTX5080 16GB VRAM, and three distinct clients.
Two clients were represented by Raspberry Pi 5 devices with
Arm Cortex-A76 CPU 2.4GHz quad-core, §GB LPDDR4X
RAM variant, and Lexar 16GB MicroSD. Due to resource
constraint, the third client was simulated on Asus N46VZ
Intel Core i15-3210M 2.5 GHz, 16GB RAM DDRA4, to rep-
resent varied edge device capabilities. All devices operated
within the same local network. For the federated learning
process, each client performed local training for 1 epoch per
communication round using a local batch size of 16 and a
learning rate of 3e-5 with the AdamW optimizer. The server
was configured to run 5 rounds for the first experimental cycle
and another 5 rounds for the second cycle, resulting in a total
of ten rounds. Using all 3 clients as a minimum required client
to contribute updates before aggregation.

2) Datasets

To simulate a realistic distributed environment with Non-IID
data across clients, three distinct, publicly available CAN
bus intrusion detection datasets were utilized. The dataset
comprised of various samples. For later use in Raspberry
Pi, the training and testing dataset were also subsetted with
20.000 rows and 50.000 rows respectively. This reduction
was necessary to accomodate the constrained resources in
Raspberry Pi.

o Dataset A (Car Hacking Dataset): Sourced from the
Hacking and Countermeasure Research Lab (HCRL)
[25], this dataset contains CAN traffic from a real ve-
hicle under various injected attacks, including Denial
of Service (DoS), Fuzzy, and Impersonation (Spoofing)
attacks, alongside normal operational data. This dataset
contains 16,5 million rows in total, consists of 14,2
million rows of normal data and 2,3 million rows of
attacks.

o Dataset B (Hacking Challenge 2020 Dataset): This
dataset was generated during the "Car Hacking: At-
tack & Defense Challenge" competition in 2020 from
a specific target vehicle [25]. It includes normal traffic
and four attack types: Flooding (DoS), Spoofing, Re-
play, and Fuzzy. For consistency with other datasets in
this study, Replay attack messages were omitted. This
dataset has 3 distinct sets, with each set derived from pre-
liminary training round, premilinary submission round,
and final submission round. In total, there are 8,5 million
rows in total, with 7,8 million rows of normal data and
873 thousand rows of attacks.

« Dataset C (Survival Analysis Dataset): Also from HCRL
[25] this dataset comprises CAN traffic from three differ-
ent vehicle types under normal conditions and injected
attacks including Flooding (DoS), Fuzzy, and Malfunc-
tion (Spoofing) scenarios. This dataset was obtained
from three different vehicle, which is Hyundai Sonata,
Kia Soul and Chevrolet Spark.

For pre-training the lightweight BERT model, a corpus of
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approximately 6.3 million rows of normal CAN messages
was created by merging the normal traffic segments from
all three datasets. For the federated fine-tuning experiments,
each client was assigned a distinct dataset, with each subset
limited to 20,000 rows. The data processing pipeline for all
datasets involved converting raw CAN messages into a space-
delimited "sentence" format (Timestamp, CAN ID, DLC, 8
Data Bytes), followed by tokenization using a Byte-Level
BPE tokenizer (vocabulary size 1000) with a maximum se-
quence length of 32. Labels were mapped to numerical values
(0: Normal, 1: DoS, 2: Fuzzy, 3: Spoofing). Additionally,
larger unseen portions (50 thousand rows each) of these
datasets were reserved as final test sets for evaluating the
global models produced by the FL process.

3) Evaluation Metrics

The performance of the proposed Fed-CALiBER framework
and baseline models was evaluated using a comprehensive set
of standard classification metrics. For overall performance,
we report Accuracy and weighted averages for Precision,
Recall, and F1-score. To gain deeper insights into the model’s
ability to correctly identify each specific class (Normal, DoS,
Fuzzy, Spoofing), per-class Precision, Recall, and F1-score.

TP+ TN

Accuracy = “4)
TP+ TN +FP+FN
TP
Precision = — (®)]
TP + FP
TP
Recall = —— (6)
TP + FN

F1 Score — 2 - Pre(fis.ion - Recall 7
Precision + Recall

A Confusion Matrix is presented to visually analyze the
classification performance and identify specific misclassifi-
cation patterns between classes. Furthermore, to assess the
"lightweight" aspect and suitability for edge deployment, we
report model size (in Megabytes), inference speed (in milisec-
ond per sample on client devices), and observed resource
usage (CPU and RAM) on the Raspberry Pi clients during
local operations.

4) Testing Scenario

As depicted in Fig. 11, our experimental evaluation is struc-
tured into two distinct federated learning cycles to assess both
initial generalization and adaptability to data shifts: Cycle 1
(Initial Generalization, Rounds 1-5): The FL process starts
with the server distributing the base pre-trained Lightweight
BERT model. Client 1 trains on Dataset A, Client 2 on Dataset
B, and Client 3 on Dataset C. After 5 federated rounds, the
aggregated global model (GMC1) is saved. This model’s
performance is then evaluated offline on held-out test portions
of Dataset A, Dataset B, and Dataset C to assess its ability to
generalize across the initial set of data distributions.
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Cycle 2 (Adaptation to Data Shift, Rounds 6 to 10): The FL
process resumes, with the server initializing the global model
using GMC1. For this cycle, the dataset assignments for
clients are swapped: Client 1 now trains on Dataset B, Client 2
on Dataset C, and Client 3 on Dataset A. After an additional 5
federated rounds, the new aggregated global model (GMC2)
is saved. This model is also evaluated offline on the held-out
test portions of Dataset A, Dataset B, and Dataset C. This two-
cycle design allows for a comparative analysis of the global
model’s performance before and after clients are exposed to
new data distributions, providing insights into the continual
learning and adaptation capabilities of the Fed-CALiBER
framework.

V. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the pro-
posed Fed-CALIBER framework. We begin by establishing
the baseline performance of our standalone lightweight BERT
model in centralized training scenarios across different hard-
ware platforms and datasets, including an analysis of its cross-
dataset generalization capabilities. Subsequently, we detail
the performance of the global models generated through our
two-cycle federated learning experiment, analyzing their gen-
eralization and adaptation to shifting data distributions. This
is followed by a comparative analysis against non-federated
baselines and relevant existing work. Finally, we discuss the
resource usage, efficiency, and privacy implications of Fed-
CALiIBER.
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A. STANDALONE LIGHTWEIGHT BERT PERFORMANCE
AND BASELINE COMPARISONS

To validate the effectiveness of the proposed lightweight
BERT architecture prior to its integration into the federated
learning framework, its performance was first assessed in
centralized training scenarios. These experiments aimed to
establish its baseline capabilities on individual datasets using
both a resource-rich server laptop and a resource-constrained
Raspberry Pi.

1) Lightweight BERT Performance on Server Laptop

The proposed lightweight BERT model was initially trained
and evaluated on a server laptop, utilizing large subset of
each distinct dataset (Dataset A: Car Hacking; Dataset B:
Hacking Challenge 2020; Dataset C: Survival Analysis, refers
to table 3) to represent its peak potential performance when
ample computational resources and data are available. The
evaluation metrics is as shown in table 4, 5, and 6, whereas the
confusion matrix is shown in fig. 12, 13, and 14. The model
achieved exceptionally high accuracy, precision, recall, and
F1-scores across all classes for each dataset when trained
and tested on its respective data distribution, demonstrating
its strong capacity to learn distinguishing features from each
CAN traffic corpus. For instance, on Dataset A, an Fl-score
of 0.9999 was achieved, while for Dataset B, the F1-score was
0.9952, and for Dataset C, it reached 0.9961.

TABLE 3. Large Subset for Central Fine-Tuning

Car Hacking  Hacking Challenge  Survival Analysis
Normal 3,153,078 2,732,284 1,105,903
DoS 193,749 151,471 88,150
Fuzzy 187,739 76,859 63,742
Spoofing 342,813 34,578 31,422
Total 3,877,379 2,995,192 1,289,217

Confusion Matrix - Fine-tuned Model (Evaluation Set)
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FIGURE 12. Lightweight BERT using Laptop on Car Hacking Dataset
Confusion Matrix
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TABLE 4. Lightweight BERT using Laptop on Car Hacking Dataset

Evaluation Metrics

Precision  Recall F1-Score
Normal 0.999998  1.000000  0.999999
DoS 1.000000  1.000000  1.000000
Fuzzy 1.000000  0.999974  0.999987
Spoofing 1.000000  1.000000  1.000000
Weighted  0.999999  0.999999  0.999999

TABLE 6. Lightweight BERT using Laptop on Survival Analysis Dataset

Evaluation Metrics

Precision  Recall F1-Score
Normal 0.999986  0.999986  0.999986
DoS 1.000000  1.000000  1.000000
Fuzzy 0.999764  0.999449  0.999606
Spoofing  0.999364  1.000000  0.999682
Weighted  0.999961  0.999961  0.999961

Confusion Matrix - Fine-tuned Model (Evaluation Set)
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FIGURE 13. Lightweight BERT using Laptop on Hacking Challenge Dataset

Confusion Matrix

TABLE 5. Lightweight BERT using Laptop on Hacking Challenge Dataset

Evaluation Metrics

Precision  Recall F1-Score
Normal 0.999954  0.999993  0.999973
DoS 1.000000  1.000000  1.000000
Fuzzy 0.999739  0.998373  0.999056
Spoofing 1.000000  1.000000  1.000000
Weighted  0.999952  0.999952  0.999952

Confusion Matrix - Fine-tuned Model (Evaluation Set)
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FIGURE 14. Lightweight BERT using Laptop on Survival Analysis Dataset
Confusion Matrix
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2) Lightweight BERT Performance on Raspberry Pi

To simulate deployment on edge devices, the lightweight
BERT model was also trained and evaluated directly on a
Raspberry Pi 5 using 20,000 row subsets from each primary
dataset (A, B, and C). This reduction was necessitated by the
device’s resource limitations. Nevertheless, studies on few-
sample BERT fine-tuning[26][27] suggest that pre-trained
Transformer models can achieve strong performance even
when fine-tuned on significantly smaller datasets than typi-
cally used for larger models, supporting the viability of this
approach for our lightweight architecture.

The results, summarized table 7, 8, and 9, while the con-
fusion matrix is shown in fig. 15, 16, and 17, indicate that
while there is a performance decrease compared to training
on larger datasets on the laptop (e.g., Fl-score on Dataset
C subset was 0.9985 vs. 0.9999), the model still maintains a
high level of detection accuracy. This reduction in dataset size
was a necessary compromise to ensure feasible training times
and accommodate the memory constraints of the Raspberry
Pi, establishing a practical baseline for on-device learning.

Conk}sion Matrix - Fine-tuned Model (Evaluation Set)
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1500
T Dos (D) - 0 681 0 0 1250
Q
©
-
= - 1000
=1
=1
%3
< Fuzzy (F) - 0 0 656 0 - 750
- 500
Spoofing (S) - 0 0 0 636 -250
' -0
@ S & S
S o"’\ p »ﬁ\ \\@\
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FIGURE 15. Lightweight BERT using Raspberry Pi on Car Hacking Dataset
Confusion Matrix

3) Architectural Baseline Comparison

To further justify the selection of our lightweight BERT
architecture, its performance on large subset of Dataset A,
was benchmarked against two other deep learning architec-
tures: a Convolutional Neural Network (CNN) and a vanilla
Transformer Encoder, both trained under similar centralized
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TABLE 7. Lightweight BERT using Raspberry Pi on Car Hacking Dataset

Evaluation Metrics

Precision  Recall F1-Score
Normal 1.000000  1.000000  1.000000
DoS 1.000000  1.000000  1.000000
Fuzzy 1.000000  1.000000  1.000000
Spoofing 1.000000  1.000000  1.000000
Weighted  1.000000  1.000000  1.000000

Confusion Matrix - Fine-tuned Model (Evaluation Set)

Normal (R) 1993
T Dos (D) - 0
Q
©
-
©
=
=1
O
< Fuzzy (F) - 1
Spoofing (S) - 0
D
&\‘*
e"éo

699

649

,
\Q\
@@

Predicted Label

656

1750

1500

1250

1000

- 500

-250

FIGURE 16. Lightweight BERT using Raspberry Pi on Hacking Challenge
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TABLE 8. Lightweight BERT using Raspberry Pi on Hacking Challenge
Dataset Evaluation Metrics

Precision  Recall F1-Score
Normal 0.999498  0.998997  0.999248
DoS 1.000000  1.000000  1.000000
Fuzzy 0.998462  0.998462  0.998462
Spoofing  0.998478  1.000000  0.999238
Weighted  0.999250  0.999250  0.999250
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FIGURE 17. Lightweight BERT using Raspberry Pi on Survival Analysis
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TABLE 9. Lightweight BERT using Raspberry Pi on Survival Analysis
Dataset Evaluation Metrics

Precision  Recall F1-Score
Normal 0.998470  0.998980  0.998725
DoS 1.000000  1.000000  1.000000
Fuzzy 0.996983  0.995482  0.996232
Spoofing  0.998523  0.998523  0.998523
Weighted  0.998500  0.998500  0.998500

conditions on the server laptop. As presented in table 10 and
fig. 18, by comparing the weighted/average of the metrics, the
proposed lightweight BERT model demonstrated its superior-
ity compared to the CNN and vanilla Transformer baselines,
underscoring its effectiveness in capturing relevant features
from the CAN message.

Metrics Comparison between Models on Car
Hacking Dataset
100,0000%
99,9950%
99,9900%
99,9850%
99,9800%
99,9750%
99,9700%
99,9650%
99,9600%

accuracy precision recall fl-score
B CNN  mTransformer Encoder M Lightweight BERT
FIGURE 18. Baseline Model Comparison Graph
TABLE 10. Baseline Model Comparison Evaluation Metrics
Accuracy Precision Recall F1-Score
CNN 99.9765% 99.9765% 99.9765% 99.9765%
Transformer 99.9951% 99.9951% 99.9951% 99.9951%
Encoder
Lightweight 99.9999% 99.9999% 99.9999%  99.9999%
BERT

4) Discussion of Standalone Model Performance

The standalone evaluations confirm that the proposed
lightweight BERT architecture is a potent model for CAN
bus intrusion detection, achieving near-perfect results when
trained and tested on specific datasets with sufficient re-
sources. While performance on the Raspberry Pi with re-
duced data is, as expected, slightly lower than on the server
laptop with more extensive data, it remains high, validating
its potential for edge deployment. The architectural compar-
isons further establish its advantages over standard CNN and
vanilla Transformer approaches for this task. However, the
subsequent cross-dataset testing (detailed in Section 5.2.5 as
part of the FL comparison) revealed significant performance
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degradation when these centrally trained standalone models
were applied to unseen dataset distributions, motivating the
exploration of federated learning.

B. FED-CALIBER: FEDERATED LEARNING RESULTS AND
ANALYSIS

This subsection details the experimental results of our pro-
posed Fed-CALIiBER framework. We evaluate the perfor-
mance of the global models generated at the end of each of
the two federated learning cycles, where clients contributed
updates from distinct and subsequently shifted local datasets.
The objective is to assess both the initial generalization
achieved through federated averaging and the model’s adapt-
ability to evolving data distributions across the clients.

1) Performance of Global Model after Cycle 1 (GMCT1)

The following 5 rounds of federated learning in Cycle 1,
where pre-trained model on Client 1 trained using Dataset
A, Client 2 on Dataset B, and Client 3 on Dataset C, the
aggregated global model GMC1 was evaluated. Table 11,
12, and 13 present the classification performance of GMC1
when tested on held-out, 50 thousand rows of Dataset A,
Dataset B, and Dataset C, respectively. These results pro-
vide insights into the initial generalization capability of the
federated model after learning collaboratively from diverse,
specialized client data from the first cycle.

TABLE 11. Global Model Cycle 1 on Car Hacking Dataset (Dataset A)

Precision  Recall F1-Score
Normal 0.999919  0.999959  0.999939
DoS 1.000000  1.000000  1.000000
Fuzzy 0.999898  0.999796  0.999847
Spoofing 1.000000  1.000000  1.000000
Weighted  0.999940  0.999940  0.999940

TABLE 12. Global Model Cycle 1 on Hacking Challenge Dataset (Dataset
B)

Precision  Recall F1-Score
Normal 0.998947  0.995317  0.997128
DoS 1.000000  1.000000  1.000000
Fuzzy 0.989336  0.994811  0.992066
Spoofing  0.994737  0.999540  0.997133
Weighted  0.996713  0.996700  0.996702

TABLE 13. Global Model Cycle 1 on Survival Analysis Dataset (Dataset C)

Precision  Recall F1-Score
Normal 0.997872  0.995002  0.996435
DoS 0.999005  1.000000  0.999502
Fuzzy 0.833305  0.996636  0.907682
Spoofing 1.000000  0.790721  0.883131
Weighted  0.966189  0.959780  0.959365
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2) Performance of Global Model after Cycle 2 (GMC2)
Cycle 2 commenced with GMC1 as the starting global model,
and clients were assigned shifted datasets (Client 1 on B,
Client 2 on C, Client 3 on A) for an additional 5 feder-
ated learning rounds. The resulting aggregated global model,
GMC?2, was then evaluated on the same held-out test portions
of Dataset A, Dataset B, and Dataset C. The performance
metrics are detailed in table 14, 15, and 16. These results
illustrate the model’s performance after adapting to the new
data distributions introduced by the clients.

There are also a noticable performance discrepancy in the
global models on Dataset C, which was consistently lower
than on Datasets A and B. Dataset C (Survival Analysis)
is the most heterogeneous of the three, as it was collected
from three distinct vehicle models (Hyundai Sonata, Kia Soul,
Chevrolet Spark). This makes it harder for the global model
to achieve the same near-perfect scores. We also hypothesize
that attack patterns in this mixed-vehicle context, particularly
those labeled as "Spoofing," may have more subtle manifes-
tations, as reflected by the lowest F1-score result compared to
other class. This result highlights the challenge that extreme
data heterogeneity poses even for federated learning and
underscores the importance of more advanced aggregation
strategies in a highly diverse fleet.

TABLE 14. Global Model Cycle 2 on Car Hacking Dataset (Dataset A)

Precision  Recall F1-Score
Normal 0.999837  0.999837  0.999837
DoS 1.000000  1.000000  1.000000
Fuzzy 0.999592  0.999592  0.999592
Spoofing ~ 1.000000  1.000000  1.000000
Weighted  0.999840  0.999840  0.999840

TABLE 15. Global Model Cycle 2 on Hacking Challenge Dataset (Dataset
B)

Precision  Recall F1-Score
Normal 0.999233  0.999435  0.999334
DoS 1.000000  1.000000  1.000000
Fuzzy 0.998727  0.995157  0.996939
Spoofing  0.997020  1.000000  0.998508
Weighted  0.998881  0.998880  0.998879

TABLE 16. Global Model Cycle 2 on Survival Analysis Dataset (Dataset C)

Precision  Recall F1-Score
Normal 0.998069  0.999189  0.998633
DoS 0.999403  1.000000  0.999701
Fuzzy 0.856479  0.996331  0.921127
Spoofing ~ 1.000000  0.817552  0.899619
Weighted  0.970899  0.966300  0.965926

3) Impact of Data Shift and Continual Learning (GMC1 vs
GMC2)

A direct comparison between GMC1 and GMC?2 displayed
in table 17, 18, and 19 reveals the impact of the second
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training cycle with shifted data. For Datasets B and C, GMC2
showed a notable improvement in F1-score from 99.6702%
t0 99.8879% and from 95.9365% to 96.5926% respectively,
suggesting successful adaptation and knowledge integration
from the new data exposures. A consistent finding across all
evaluations is that models generally achieved a slightly lower
F1-score on Dataset C (Survival Analysis). This is attributable
to Dataset C being the most internally heterogeneous, as it
was sourced from three different vehicle models. The result-
ing diversity in its "normal" traffic baseline and potential
variations in attack manifestations make it an inherently more
challenging classification task compared to Datasets A and B,
which were each sourced from a single vehicle.

Interestingly, a different dynamic appears during the feder-
ated aggregation process, particularly in Cycle 2. The slight
performance degradation of the global model (GMC2) specif-
ically on Dataset A (Car Hacking). Looking at the training
result of only using dataset A, which produced a really good
result, it’s possible that Dataset A may be the most statistically
unique or distinct "outlier" relative to the other two datasets,
making the patterns in Dataset A are very specific and don’t
transfer well to B and C. While Dataset C is internally di-
verse, its overall characteristics and those of Dataset B may
share more commonalities and are helpful for each other,
and even somewhat helpful for Dataset A, but not enough to
overcome the loss of specialization from Cycle 1. In Cycle
2, Client 3 (training on A) is trying to contribute "specialized
A-knowledge" to a model that is simultaneously being pulled
towards a "general B/C-knowledge" state by two other clients,
where their gradient updates likely pushed the global model
towards a feature space that was mutually optimal for both
B and C, as they may share more statistical similarities. The
general knowledge wins out, improving B and C, but hurting
A’s specialized performance.

TABLE 17. Metrics Comparison of GMC1 and GMC2 on Car Hacking
Dataset

Global Model Accuracy  Precision Recall F1-Score
Cycle 1 (GMC1)  99.9940%  99.9940%  99.9940%  99.9940%
Cycle 2 (GMC2)  99.9840%  99.9840%  99.9840%  99.9840%

TABLE 18. Metrics Comparison of GMC1 and GMC2 on Hacking Challenge
Dataset

Global Model Accuracy Precision Recall F1-Score
Cycle 1 (GMC1)  99.6700%  99.6713%  99.6700%  99.6702%
Cycle 2 (GMC2)  99.8880%  99.8881%  99.8880%  99.8879%

TABLE 19. Metrics Comparison of GMC1 and GMC2 on Survival Analysis
Dataset

Global Model Accuracy  Precision Recall F1-Score
Cycle 1 (GMC1) 95.9780%  96.6189%  95.9780%  95.9365%
Cycle 2 (GMC2)  96.6300%  97.0899%  96.6300%  96.5926%

4) Comparison with State-of-the-Art Federated IDS

To position Fed-CALiBER within the existing landscape of
federated IDS for vehicular networks, we compare its per-
formance against the results reported by Zhang et al.[16],
who also employed a federated Transformer-based approach.
Table 20 and fig. 19 presents this comparison, considering
relevant metrics and dataset characteristics. The comparison
was based on the Car Hacking Dataset, as it is one of the
datasets used in both experiments.

TABLE 20. Metrics Comparison between Fed-CALIiBER and existing
method on Car Hacking Dataset

Accuracy  Precision Recall F1-Score
Zhang et al. (2025)  99.7552%  99.7645%  99.7552%  99.7596%
Fed-CALiBER 99.9840%  99.9840%  99.9840%  99.9840%

Metrics Comparison on Car Hacking Dataset
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99,7000%

99,6000%

accuracy precision recall

W Fed-CALIBER mZhangetal.

FIGURE 19. Fed-CALIBER and existing method Comparison Graph

5) Cross-Dataset Generalization Analysis of FL Models vs
Standalone

To further quantify the benefits of federated learning for
generalization, table 21 to 23 and fig. 20 to 22 compares
the performance of the global model GMC2 against stan-
dalone lightweight BERT models (trained using Raspberry
Pi on only one specific dataset) when evaluated on all
three test datasets (A, B, and C). For instance, when tested
on Dataset A, GMC2 achieved an Fl-score of 99.9840%,
whereas standalone models trained only on Dataset B and
Dataset C achieved 77.5061% and 93.1838% respectively.
Similar trends were observed for tests on Datasets B and
C. These results consistently show that the federated global
model GMC?2 exhibits superior generalization across diverse,
unseen dataset distributions compared to models trained in
isolation on a single data source, highlighting FL’s strength
in creating more robust and widely applicable IDS solutions.

TABLE 21. Cross Dataset Testing on Car Hacking Dataset (Dataset A)

Accuracy  Precision Recall F1-Score
Global Model ~ 99.9840%  99.9840%  99.9840%  99.9840%
Model B 83.9060%  72.3761%  83.9060%  77.5061%
Model C 93.7000%  94.3298%  93.7000%  93.1838%
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TABLE 22. Cross Dataset Testing on Hacking Challenge (Dataset B)
Dataset

Accuracy  Precision Recall F1-Score
Global Model ~ 99.8880%  99.8881%  99.8880%  99.8879%
Model A 78.6820%  65.8354%  78.6820%  71.5313%
Model C 78.3780%  65.8948%  18.3780%  71.3972%

TABLE 23. Cross Dataset Testing on Survival Analaysis Dataset (Dataset C)

Accuracy  Precision Recall F1-Score
Global Model ~ 96.6300%  97.0899%  96.6300%  96.5926%
Model A 90.5580%  92.7991%  90.5580%  90.6849%
Model B 79.2380%  66.1628%  79.2380%  71.8611%

C. RESOURCE USAGE AND EFFICIENCY OF FED-CALIBER
A key motivation for Fed-CALiBER is the development of a
lightweight and efficient IDS. The lightweight BERT model
has a disk size of approximately 13MB (for .safetensors, hug-
gingface files), reflecting its compact parameterization. Infer-
ence speed evaluations conducted on a Raspberry Pi 5 client
demonstrated an average throughput of 3-4ms per sample
with a batch size of 16. During federated local training rounds
on the Raspberry Pi clients, CPU utilization typically ranged
between 60% and 70%, with the Python process consuming
an average of 0.6 GB of RAM, well within the device’s
8GB capacity. The average duration for a full experimental
run of two cycles of FL (which consists of 10 communi-
cation round), including local client training for an epoch
and server aggregation, was approximately 7.5 minutes. This
rapid round time makes the system highly viable for frequent,
periodic model updates (such as multiple times per day or
daily) to quickly adapt to new data, while simultaneously
having no need to be instantaneous but should occur regularly
to maintain security posture.

D. DISCUSSION
The experimental results presented in this study demon-

strate the viability and effectiveness of the proposed Fed-
CALIBER framework for CAN bus intrusion detection. Our

Cross Dataset Test on Car Hacking Dataset
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FIGURE 20. Cross Dataset Testing on Car Hacking Dataset (Dataset A)
Comparison Graph
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proposed lightweight BERT model, when trained in a central-
ized manner, established a strong baseline, achieving near-
perfect detection scores on individual datasets when ample
resources (server laptop, full dataset portions) were available.
Performance remained high even when trained on resource-
constrained Raspberry Pi devices using significantly smaller
20,000-row data subsets, although a predictable performance
dip was observed compared to laptop-based training with
more data. Interestingly, for Dataset A, the Raspberry Pi stan-
dalone model occasionally outperformed its laptop-trained
counterpart, potentially due to the smaller training subset in-
advertently excluding particularly noisy or challenging sam-
ples. However, the crucial limitation of these standalone mod-
els was their significantly reduced cross-dataset generaliza-
tion, underscoring the inherent challenges posed by the Non-
IID nature of real-world vehicular data.

The introduction of Federated Learning via Fed-
CALIBER, particularly through our two-cycle experimental
design, showcased clear benefits. The global model after the
first cycle (GMC1) demonstrated an initial ability to general-
ize by learning from diverse client specializations. The second
cycle, which involved clients training on shifted datasets, led
to the GMC2 model. GMC2 generally exhibited improved ro-
bustness and superior average generalization across Datasets
B and C compared to GMC1, indicating successful adaptation
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and knowledge integration from the varied data exposures.
For instance, the Fl-score on Dataset C improved from
95.9365% t0 96.5926%. Notably, while GMC2 showed broad
improvements, its performance on Dataset A was slightly
lower than GMC1’s, a phenomenon potentially attributable
to catastrophic forgetting of some Dataset A specifics as the
model adapted to the other datasets, or the inherent complex-
ities of achieving uniform peak performance across all three
distinct distributions simultaneously. Nevertheless, GMC?2
consistently outperformed standalone models in cross-dataset
evaluations, highlighting FL’s strength in mitigating the neg-
ative impacts of Non-IID data.

The resource usage metrics further validate the "lightweight"
aspect of Fed-CALiBER. With a model size of approximately
13MB and efficient inference speeds observed on Raspberry
Pi clients, the system demonstrates suitability for edge de-
ployment. Furthermore, the federated approach inherently
provides a foundational layer of data privacy by ensuring raw
CAN messages remain localized on client devices.

It is acknowledged, however, that this study has specific
scope limitations. The proposed lightweight BERT model
is fundamentally specialized for the CAN bus protocol, as
its entire knowledge base was built during pre-training on
normal CAN messages. While the architectural design is
hardware-agnostic and portable to other capable embedded
platforms, applying this methodology to other IVN protocols
like Automotive Ethernet or FlexRay would require a new,
dedicated pre-training phase with data from those specific
protocols.

The Raspberry Pi was chosen in this study to act as a
representative proxy for a resource-constrained edge device,
confirming the feasibility of Fed-CALIBER’s lightweight
design on low-power hardware. While the current simulation
with three clients and three distinct datasets provides valu-
able insights into FL’s potential for CAN IDS, scaling these
experiments to a larger, more diverse fleet of hundreds or
thousands of vehicles introduces further challenges including
the increased communication burden on the central server,
the need for robust client management and scheduling, and
handling real-world issues like intermittent client connectiv-
ity (client dropouts) and varying network latency, making it a
promising avenue for future investigation to further validate
the framework’s practical applicability. These considerations
are critical for the transition from a simulated environment to
a production-level system and are highlighted as key direc-
tions for future work.

While a foundational privacy benefit of FL is data local-
ization, it is important to acknowledge that the transmission
of model updates is not without risks. The framework, in its
current form, is vulnerable to advanced attacks. For instance,
an adversary could potentially perform inference attacks by
analyzing a client’s model updates to deduce information
about the private training data used. Furthermore, the con-
ducted experiment assumes "honest" participants (no rogue,
compromised client) and does not explicitly defend against
model poisoning attacks, where a malicious client could
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intentionally send corrupted updates to degrade the global
model’s performance or insert a backdoor.

To address these vulnerabilities, future work could inte-
grate established Privacy-Enhancing Technologies (PETs).
Secure Aggregation protocols could be applied during the
server-side aggregation step, using cryptographic techniques
to allow the server to compute the sum of client updates
without decrypting any individual update. On the client-side,
Differential Privacy could be implemented by adding a pre-
cisely calibrated amount of statistical noise to model parame-
ters before transmission, providing mathematical guarantees
against inference attacks.

To enhance the defense even further, Secure Aggregation
could be applied during the server-side aggregation step.
In this scheme, clients would encrypt their model updates,
and the server would only be able to compute the sum of
these updates without decrypting individual contributions.
Differential Privacy could also be applied on the client-side.
By implementing it, client would add a precisely calibrated
amount of statistical noise to its parameters before the client
transmits its model update to the server to be aggregated.

The observed performance dynamics in our experiments,
particularly the catastrophic forgetting on Dataset A during
Cycle 2, are characteristic of client drift, a known challenge
when applying standard Federated Averaging (FedAvg) to
Non-IID data. Client drift occurs as local models diverge
towards their skewed local optima, leading to a sub-optimal
aggregated global model. More robust FL algorithm such
as FedProx and SCAFFOLD should be explored to address
this matter. The FedProx algorithm [28] addresses this by
adding a proximal term to the client loss function, which
regularizes local training and keeps client models closer to
the global consensus, directly counteracting the "tug-of-war’
effect. Alternatively, Scaffold [29] uses control variates to
correct for this drift by estimating the update directions of
both the client and server, leading to more stable convergence
in heterogeneous settings. Implementing and comparing these
advanced algorithms against our FedAvg baseline is a sug-
gested next step for developing a more robust and consistently
high-performing federated IDS.

VI. CONCLUSION

In this paper, we introduced Fed-CALiBER, a federated
learning framework leveraging a novel lightweight BERT
model for intrusion detection in automotive CAN bus net-
works. Our approach successfully addresses critical chal-
lenges of data privacy by keeping raw data localized, uti-
lize resource constrained edge devices through its compact
architecture, and tackles the Non-IID nature of data from
distributed vehicles via collaborative learning. Experimental
results demonstrated that the proposed lightweight BERT
achieves high performances, and the federated learning pro-
cess, particularly through our two-cycle design, enables sig-
nificant model improvement and adaptation to shifting data
distributions. This resulted in a global model with enhanced
robustness and superior average performance across diverse
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datasets compared to standalone models. The system’s effi-
ciency and suitability for edge deployment were validated on
Raspberry Pi clients, which exhibited low resource consump-
tion and practical inference speeds.

The primary contributions of this work include the de-
sign and evaluation of a compact Transformer architecture
specifically tailored for CAN messages, combined with a
unique two-cycle federated learning experimental setup that
demonstrates both initial generalization and continual learn-
ing capabilities when client data distributions evolve. Fed-
CALIBER thus offers a promising direction for developing
scalable, privacy-preserving, and resource-efficient IDS for
autonomous vehicle in-vehicle networks.

Future work will focus on several key advancements to
build upon the foundation established by Fed-CALiBER. A
primary direction is the extension of this methodology to
other critical In-Vehicle Network (IVNs) protocols. While the
current model is an expert on CAN bus, new pre-training and
fine-tuning cycles could be conducted on datasets from Auto-
motive Ethernet or FlexRay to create specialized lightweight
models for those domains, eventually leading to a multi-
protocol federated IDS. Secondly, the security and robustness
of the federated process itself can be enhanced by exploring
advanced FL algorithms such as FedProx or Scaffold, to better
handle statistical heterogeneity, and by integrating privacy-
enhancing technologies such as Secure Aggregation Protocol
on server-side, or Differential Privacy on client-side, to de-
fense against model poisoning attacks from potential rogue
clients. A crucial step towards real-world application involves
scaling the experiments to a larger, more heterogeneous fleet
of clients and, ultimately, validating the end-to-end frame-
work on automotive-grade hardware integrated directly into a
physical vehicle. Additionally, to better contextualize the per-
formance gains, a future comparative analysis should include
strong, non-deep-learning baselines. Evaluating the proposed
model against traditional machine learning models such as
Gradient Boosting (e.g., XGBoost) or Support Vector Ma-
chines (SVM), trained on the same feature sets, to provide a
more complete picture of its performance within the broader
machine learning landscape.
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